智慧照明系統產品實力廠家

logo-350-100 - 投影.png

4001-606065

136-0131-2458
186-1815-8486
139-1181-3828

PWM方式開關電源中IGBT 的損耗分析

在任何裝置中使用IGBT 都會遇到IGBT 的選擇及熱設計問題。當電壓應力和電流應力這2 個直觀參數確定之后, 最終需要根據IGBT 在應用條件下的損耗及熱循環能力來選定IGBT。通常由于使用條件不同, 通過IGBT 數據手冊給出的參數不能確切得出應用條件下IGBT 的損耗。比較好的方法是通過測量行業確定IGBT 數據手冊中參數的測量條件與實際應用環境的差別, 并介紹IGBT 的損耗的簡單測量方法。

IGBT 參數的定義

廠商所提供的IGBT 開關參數通常是在純感性負載下測量的, 圖1 和圖2 分別是IR 公司和TOSHIBA公司測量開關時間的電路和定義開關時間的波形。其共同特點是: 開通處于續流狀態的純感性負載; 關斷有箝位二極管的純感性負載。有些數據手冊還給出了開關過程的能量損失 ,也是在同樣條件下測量的。

對于PWM 方式工作并使用變壓器的開關電源, 其工作情況則與之區別很大。圖3 是11 kW 半橋型電路及其工作波形, 使用的IGBT 為GA75TS120U。由波形可見, 電流上升時間tr 約為500 ns, 下降時間t f 約為300 ns。但在數據手冊中,GA75TS120U 的電流升降時間分別為t r= 100 ns,t f= 80 ns, 與實際工作情況差異較大。其原因主要在于以下2 個方面:

(1)開通時,圖3 中由于變壓器漏感的存在, IGBT實際上開通了1 個零電流感性負載, 近似于零電流開通, 電流上升率受漏感充電速度的限制, 因而實際電流上升時間tr 不完全取決于IGBT。而數據手冊中給出開通處于續流狀態的純感性負載, 開通瞬間, IGBT 既要承受電感中的電流, 還要承受續流二極管的反向恢復電流, 電流上升率則完全取決于IGBT 的開通速度。

(2)關斷時,圖3 中的IGBT 并非是在關斷1 個純感性負載, 而是關斷1 個R - L 型負載( 變壓器及其負載, 從變壓器一次側可等效為R -L 型負載) ,其電流的下降時間t f 要慢于關斷帶箝位的純感性負載。并且, 對于純感性負載, 只有當IGBT 的集電極電壓上升到箝位值后, IGBT 的電流才開始下降( 見圖1、圖2 中波形) , 而電阻-電感性負載時, 集電極電壓和電流幾乎是同時變化的( 見圖3b 波形) 。

由于上述原因,圖3 中IGBT 的t r、t f 均大于給定值, 但這并不意味著損耗的上升, 因為開關損耗還取決于開關過程中電壓電流的"重疊"程度, 而圖3中的"重迭"明顯不如圖1、圖2 中嚴重, 因而整體損耗將下降。

IGBT 損耗的測量

IGBT 損耗的測量實際上是通過對其工作電壓和電流的測量和計算而得到的, 因而損耗的測量實質上是電壓和電流的測量, 電壓和電流測量方法的恰當與否直接影響到測量結果的可信度。

3.1 電流測量

電流測量應使用高頻無源電流互感器, 不要使用磁平衡式電流傳感器, 前者都有較好的高頻響應,后者往往速度較慢, 達不到測量要求。電流傳感器要置于被測IGBT 的發射或集電極, 而不要置于主變壓器一次側, 這是2 個不同的電流。這一點可以從圖3 IGBT 的關斷過程中看出: IGBT1 關斷時, VD2 將對關斷產生的電壓過沖箝位( t1 ~ t 期間) , 在VD2中產生箝位電流。而IGBT1 中電流因轉向VD2 而陡降, 此時變壓器一次側電流為IGBT1 和VD2 電流之和, 而非僅IGBT1 中的電流。電流互感器通常由自己制作, 使用前應先檢驗其性能, 可采用圖4 電路進行檢驗。電阻R1、R2 應使用無感電阻。實際測量時, 互感器初級匝數N 1通常為1 匝, 檢驗時可適當增加N 1, 這樣可以減小檢驗電流I 而不降低互感器初級的總安匝數, 使檢驗工作更加容易。比較U2 和U1 波形在延時和畸變方面的區別, 就可確定互感器是否合格。通常U2不能有明顯的失真, U2 對U1 的延時應遠小于IGBT的開關時間參數。

3.2 電壓測量

IGBT 開通和關斷過程中電壓的完整觀測可以直接使用示波器探頭, 但對于開通時IGBT 電壓拖尾過程和通態飽和壓降的測量, 則需要使用箝位電路( 見圖5) 。原因在于此時示波器的Y 軸分辨率要置于0.5/ div~ 10/ div 檔, 而這時輸入探頭的電壓變化范圍則高達幾百伏, 這種情況下通常示波器會產生很大的失真, 作零點漂移, 無法正常觀察。用圖中R1、R2、C、VD 和VS 所構成的電壓箝位電路, 可以取出Uce中小于UVS的那一部分波形Uce。用示波器觀測則不會出現失真和漂移。UVS 與Uce的關系可用下式表示:

測量Uce開通拖尾過程時, 應選UVS= 50 V, 測量動態飽和壓降時則應選UVS= 12 V。

圖中R2、C 用來補償由示波器探頭輸入電容及VD、VS 結電容引起的失真。使用前利用已知的方波信號對箝位電路進行校準。

應用舉例

圖6、圖7 中的波形是不同的IGBT 在圖1 所示電路中工作時測得的。測量條件為: 輸入電壓Ucc= 520 V, 輸出功率Po= 11 kW, 初級電流I = 52 A,工作頻率f = 20 kHz。圖6 中開通電壓的測量使用了圖5 中的箝位電路, 箝位電壓值UVS = 48 V, 因此, 其波形上最高電壓不超過48 V。

對測得的波形進行折線等效, 并對電壓電流的乘積分段積分, 就可粗略計算出IGBT 的總損耗,圖8是對GA75TS120U 開關過程的折線等效圖, 并由此求得:

開通損耗: P1= 12 W

關斷損耗: P2= 56.6 W

過渡損耗: P3= 10 W

通態損耗: P4= 53.8W( 飽和壓降Usat= 2

單管總損耗: P c= 132.4 W

其中計算通態損耗的飽和壓降Usat是用圖5 給出的箝位電路測量的, 箝位電壓UVS= 12 V。

從波形可以看出, 飽和壓降從開通到穩定有一個過渡過程, 由此造成的損耗P3 也不容忽視。

下表是用前述方法測量幾家不同公司的IGBT所得的結果; 測量電路為圖1, 測量條件相同。

測量結果可以作為選擇IGBT 和熱設計的依據。對于IGBT 的選取, 應綜合考慮開關損耗和通態損耗。低頻工作時, 低飽和壓降的IGBT 總損耗較小,而高頻工作時則應選擇開關速度快的IGBT。

值得注意的是: 樣品A( IR 公司GA75TS120U) 在高速IGBT 中具有較低的飽和壓降, 因而總損耗較小。同時從表中可以看出, 樣品D 與B 和C 的損耗接近, 但基板溫度較低; 樣品E 損耗較大, 但基板溫度并不顯著高于B 和C, 這說明樣品D 和E 的熱循環能力較差。盡管樣品中各IGBT 數據手冊所標明的結-殼熱阻Rth( j- c) 基本相同, 實際上通常采用Ucc= 520 V、Po= 11 kW、I c= 52 A、f = 20 kHz, NPT( 非穿通型)技術制造的管芯( GA75TS120U) 厚度僅為PT( 穿通型) 技術管芯的四分之一, 因而熱阻小, 熱循環能力強, 可以降低對散熱器的要求, 同時,開關速度不隨結溫變化。PT 型IGBT 的開關速度則隨溫度升高而降低。高頻工作時可以考慮選擇NPT型IGBT。

總結

文中介紹的損耗測量分析方法簡單而有效, 可以使設計者對IGBT 的選擇和熱設計作到心中有數,以利于得出最優的設計方案。需要提請注意的是,測量工具及輔助電路的標準是非常必要的, 否則可能導致較大的誤差。


文章分類: 照明控制
分享到:
AD0I4Or8BBAEGAAgsaWfvgUolaqGjwcwIjgi

地址:北京市海淀區學清路學知軒大廈1813室、1606室

智能路燈控制器

熱線電話:4001-606065   

產品咨詢:135-2003-9270  136-0131-2458

項目定制:188-0007-1208

AD0I4Or8BBAEGAAgqqWfvgUoy5TyqwQwIjgi

郵箱:13911813828@139.com

商務合作:139-1181-3828

網站地圖